# Expanding Argumentation Frameworks: Enforcing and Monotonicity Results

Ringo Baumann and Gerhard Brewka

Intelligent Systems Department of Computer Science University of Leipzig, Germany

COMMA 2010, Desenzano del Garda, Italy 8th-10th September 2010

### **Motivation**

Dungs AFs are static but argumentation is a dynamic process.



### **Motivation**

Dungs AFs are static but argumentation is a dynamic process.



III.

### Exemplification

# Example 1: revising AFs Let $\mathcal{A}$ be the following argument graph: $a_1$ $a_2$ $a_3$ $a_4$ $a_5$ $\mathcal{E}_{pref}(\mathcal{A}) = \{E_1, E_2\} = \{\{a_1, a_3, a_5\}, \{a_1, a_4\}\}.$

Example 1: revising AFs

Let  $\mathcal{A}^*$  be the following (weak) expansion of  $\mathcal{A}$ :



 $\begin{aligned} \mathcal{E}_{pref}(\mathcal{A}) &= \{E_1, E_2\} = \{\{a_1, a_3, a_5\}, \{a_1, a_4\}\}. \\ \mathcal{E}_{pref}(\mathcal{A}^*) &= \{E_1 \cup \{a_1^*\}, E_2 \cup \{a_1^*\}, E_2 \cup \{a_2^*\}\}. \end{aligned}$ 

Example 1: revising AFs

Let  $\mathcal{A}^*$  be the following (weak) expansion of  $\mathcal{A}$ :



 $\begin{aligned} \mathcal{E}_{\textit{pref}}(\mathcal{A}) &= \{E_1, E_2\} = \{\{a_1, a_3, a_5\}, \{a_1, a_4\}\}. \\ \mathcal{E}_{\textit{pref}}(\mathcal{A}^*) &= \{E_1 \cup \{a_1^*\}, E_2 \cup \{a_1^*\}, E_2 \cup \{a_2^*\}\}. \end{aligned}$ 

we observe the following interrelations:

- the number of extensions increased
- every old belief set is contained in a new one
- every new belief set is the union of an old one and a new argument

#### Example 2: enforcing problem

Consider the following two-agent scenario. The evaluation is given by the grounded semantics.

1<sup>st</sup> round: Agent A

 $\mathcal{E}_{gr}(\mathcal{A}_1) = \{\{a_1\}\}$ 

#### Example 2: enforcing problem

Consider the following two-agent scenario. The evaluation is given by the grounded semantics.

2<sup>nd</sup> round: Agent B



 $\mathcal{E}_{gr}(\mathcal{A}_2) = \{\{b_1\}\}$ 

#### Example 2: enforcing problem

Consider the following two-agent scenario. The evaluation is given by the grounded semantics.

3<sup>rd</sup> round: Agent A



 $\mathcal{E}_{gr}(\mathcal{A}_3) = \{ \varnothing \}$ 

Is it possible for Agent B to get  $b_1$  accepted in the fourth round?

#### Example 2: enforcing problem

Consider the following two-agent scenario. The evaluation is given by the grounded semantics.

4<sup>th</sup> round: Agent B

$$(a_1, b_1, a_2, b_2)$$

 $\mathcal{E}_{gr}(\mathcal{A}_4) = \{\{b_1, b_2\}\}$ 

#### **Normal Expansions**

**Def.:**  $\mathcal{A}^*$  is an *expansion* of  $\mathcal{A} = (A, R)$  iff  $\mathcal{A}^* = (A \cup A^*, R \cup R^*)$  for some nonempty  $A^*$  disjoint from A.

normal 
$$(\mathcal{A} \prec^{N} \mathcal{A}^{*})$$
 iff  $\forall ab ((a, b) \in \mathbb{R}^{*} \rightarrow a \in \mathcal{A}^{*} \lor b \in \mathcal{A}^{*})$ ,

Enforcing Results

### **New Definitions**

Normal Expansions

An expansion is

• normal  $(\mathcal{A} \prec^{N} \mathcal{A}^{*})$  iff  $\forall ab \ ((a, b) \in \mathbb{R}^{*} \rightarrow a \in \mathcal{A}^{*} \lor b \in \mathcal{A}^{*}),$ 



#### **Normal Expansions**

**Def.:**  $\mathcal{A}^*$  is an *expansion* of  $\mathcal{A} = (A, R)$  iff  $\mathcal{A}^* = (A \cup A^*, R \cup R^*)$  for some nonempty  $A^*$  disjoint from A.

Strong 
$$(\mathcal{A} \prec_{\mathcal{S}}^{N} \mathcal{A}^{*})$$
 iff  $\mathcal{A} \prec^{N} \mathcal{A}^{*}$  and  
∀ab  $((a, b) \in \mathbb{R}^{*} \rightarrow \neg (a \in A \land b \in A^{*}))$ 

#### **Normal Expansions**

Strong 
$$(\mathcal{A} \prec_{S}^{N} \mathcal{A}^{*})$$
 iff  $\mathcal{A} \prec^{N} \mathcal{A}^{*}$  and  
∀ab  $((a, b) \in \mathbb{R}^{*} \to \neg (a \in A \land b \in \mathbb{A}^{*})),$ 



#### **Normal Expansions**

**Def.:**  $\mathcal{A}^*$  is an *expansion* of  $\mathcal{A} = (A, R)$  iff  $\mathcal{A}^* = (A \cup A^*, R \cup R^*)$  for some nonempty  $A^*$  disjoint from A.

• normal 
$$(\mathcal{A} <^N \mathcal{A}^*)$$
 iff  $\forall ab ((a, b) \in \mathbb{R}^* \to a \in \mathbb{A}^* \lor b \in \mathbb{A}^*)$ 

2 strong 
$$(\mathcal{A} \prec_{\mathcal{S}}^{N} \mathcal{A}^{*})$$
 iff  $\mathcal{A} \prec^{N} \mathcal{A}^{*}$  and  
 $\forall ab ((a,b) \in \mathbb{R}^{*} \rightarrow \neg (a \in A \land b \in \mathbb{A}^{*}))$ 

**3** weak (
$$\mathcal{A} \prec_W^N \mathcal{A}^*$$
) iff  $\mathcal{A} \prec^N \mathcal{A}^*$  and  
∀ab ((a,b) ∈  $\mathbb{R}^* \to \neg(a \in \mathbb{A}^* \land b \in \mathbb{A})$ )

#### **Normal Expansions**

weak (
$$\mathcal{A} \prec_{W}^{N} \mathcal{A}^{*}$$
) iff  $\mathcal{A} \prec^{N} \mathcal{A}^{*}$  and  
∀ab ((a, b) ∈  $\mathbb{R}^{*} \rightarrow \neg (a \in \mathbb{A}^{*} \land b \in \mathbb{A})$ ),



#### Enforcements

Def.: Given

- an AF  $\mathcal{A} = (A, R)$ ,
- a semantics  ${\mathcal S}$  and
- a desired set of arguments  $E^*$  w.t.p.  $E^* \notin \mathcal{E}_{\mathcal{S}}(\mathcal{A})$ .

An  $(\mathcal{A}, \mathcal{S})$ -enforcement of  $E^*$  is a pair  $\mathcal{F} = (\mathcal{A}^*, \mathcal{S}^*)$  such that

- $\mathcal{A}^* = \mathcal{A} \text{ or } \mathcal{A} \prec^N \mathcal{A}^* \text{ and }$
- $E^* \in \mathcal{E}_{\mathcal{S}^*}(\mathcal{A}^*)$  holds.

#### Enforcements

Def .: Given

- an AF  $\mathcal{A} = (\mathcal{A}, \mathcal{R})$ ,
- a semantics S and
- a desired set of arguments  $E^*$  w.t.p.  $E^* \notin \mathcal{E}_{\mathcal{S}}(\mathcal{A})$ .

An  $(\mathcal{A}, \mathcal{S})$ -enforcement of  $E^*$  is a pair  $\mathcal{F} = (\mathcal{A}^*, \mathcal{S}^*)$  such that

- $\mathcal{A}^* = \mathcal{A} \text{ or } \mathcal{A} \prec^N \mathcal{A}^* \text{ and }$
- $E^* \in \mathcal{E}_{\mathcal{S}^*}(\mathcal{A}^*)$  holds.

 ${\mathcal F}$  is called

- conservative if  $S = S^*$ ,
- **2** conservative strong if  $S = S^*$  and  $\mathcal{A} \prec_S^N \mathcal{A}^*$ ,
- So conservative weak if  $S = S^*$  and  $A <_W^N A^*$ .

#### Enforcements

Def .: Given

- an AF  $\mathcal{A} = (\mathcal{A}, \mathcal{R})$ ,
- a semantics S and
- a desired set of arguments  $E^*$  w.t.p.  $E^* \notin \mathcal{E}_{\mathcal{S}}(\mathcal{A})$ .

An  $(\mathcal{A}, \mathcal{S})$ -enforcement of  $E^*$  is a pair  $\mathcal{F} = (\mathcal{A}^*, \mathcal{S}^*)$  such that

- $\mathcal{A}^* = \mathcal{A} \text{ or } \mathcal{A} \prec^N \mathcal{A}^* \text{ and }$
- $E^* \in \mathcal{E}_{\mathcal{S}^*}(\mathcal{A}^*)$  holds.

 ${\mathcal F}$  is called

- Iiberal if  $S \neq S^*$ ,
- 2 *liberal strong* if  $S \neq S^*$  and  $A \prec_S^N A^*$ ,
- Iiberal weak if  $S \neq S^*$  and  $A \prec_W^N A^*$ .

#### Enforcements

Remember the two-agent scenario from the beginning.

4<sup>th</sup> round: Agent B

$$(a_1, b_1, a_2, b_2)$$

 $\mathcal{E}_{gr}(\mathcal{A}_4) = \{\{b_1, b_2\}\}$ 

This is a conservative strong enforcement of  $\{b_1, b_2\}$ .

Theorem 1 (conservative strong enforcement)

Let

- $\mathcal{A} = (\mathcal{A}, \mathcal{R})$  be an AF
- S a semantics and
- $C \subseteq A$  a conflict-free set w.t.p.  $C \notin \mathcal{E}_{\sigma}(\mathcal{A})$ .

Theorem 1 (conservative strong enforcement)

Let

- $\mathcal{A} = (\mathcal{A}, \mathcal{R})$  be an AF
- S a semantics and
- $C \subseteq A$  a conflict-free set w.t.p.  $C \notin \mathcal{E}_{\sigma}(\mathcal{A})$ .

There is a conservative strong enforcement  $\mathcal{F} = (\mathcal{A}^*, \mathcal{S})$  of  $C^*$  w.t.p.:

- $|C^* \setminus C| = 1$  and
- $C^*$  is the unique extension of  $\mathcal{A}^*$  (for  $\mathcal{S} \in \{st, pr, co, gr, id\}$ ) or
- set-inclusion maximal extension for admissible semantics.

Example 3 - Standard Construction

Let  $\mathcal{A}$  be the following argument graph:



 $\mathbf{C} = \{\mathbf{a}_2, \mathbf{a}_4\} \notin \mathcal{E}_{\sigma}(\mathcal{A}) \text{ for all } \sigma \in \{st, ad, pr, co, gr, id\}$ 



Let  $\mathcal{A}$  be the following argument graph:



 $C = \{a_2, a_4\} \notin \mathcal{E}_{\sigma}(\mathcal{A}) \text{ for all } \sigma \in \{st, ad, pr, co, gr, id\}.$  $C^* = \{a_2, a_4, a_1^*\} \in \mathcal{E}_{\sigma}(\mathcal{A}) \text{ for all } \sigma \in \{st, ad, pr, co, gr, id\}.$ 



Let  $\mathcal{A}$  be the following argument graph:



 $C = \{a_2, a_4\} \notin \mathcal{E}_{\sigma}(\mathcal{A}) \text{ for all } \sigma \in \{st, ad, pr, co, gr, id\}.$  $C^* = \{a_2, a_4, a_1^*\} \in \mathcal{E}_{\sigma}(\mathcal{A}) \text{ for all } \sigma \in \{st, ad, pr, co, gr, id\}.$ 

open question: Minimal change?

Recap - Abstract Principles [Baroni/Giacomin]

- **Def.:** A semantics S satisfies
  - admissibility,
  - 2 reinstatement,
  - conflict-freeness

if and only if for any argumentation framework  $\mathcal{A} \in \mathcal{D}_{\mathcal{S}}$  and any extension  $E \in \mathcal{E}_{\mathcal{S}}(\mathcal{A})$  it holds that:

Recap - Abstract Principles [Baroni/Giacomin]

- **Def.:** A semantics S satisfies
  - admissibility,
  - 2 reinstatement,
  - conflict-freeness

if and only if for any argumentation framework  $\mathcal{A} \in \mathcal{D}_{\mathcal{S}}$  and any extension  $E \in \mathcal{E}_{\mathcal{S}}(\mathcal{A})$  it holds that:

- $\forall a \ (a \in E \rightarrow \forall b \ (b \in A \land (b, a) \in R \rightarrow (E, \{b\}) \in R)),$ "*E* defends all its elements."
- ∀a (∀b (b ∈ A ∧ (b, a) ∈ R → (E, {b}) ∈ R) → a ∈ E),
  "Every argument defended by E is an element of E."

③ (E, E) ∉ R.

Theorem 2 (exchanging believed with unattacking arguments)

Given an AF  $\mathcal{A} = (A, R)$  and

- a semantics  $\mathcal{S}$  satisfying reinstatement,
- $\bullet\,$  a semantics  $\mathcal{S}^*,$  satisfying admissibility and conflict-freeness and

• a set *E* such that 
$$E \in \mathcal{E}_{\mathcal{S}}(\mathcal{A})$$
.

Theorem 2 (exchanging believed with unattacking arguments)

Given an AF  $\mathcal{A} = (A, R)$  and

- a semantics  ${\cal S}$  satisfying reinstatement,
- a semantics  $\mathcal{S}^*$ , satisfying admissibility and conflict-freeness and
- a set *E* such that  $E \in \mathcal{E}_{\mathcal{S}}(\mathcal{A})$ .

There is no enforcement  $\mathcal{F} = (\mathcal{A}^*, \mathcal{S}^*)$  of  $E^*$  if

- $E^* = E' \cup C$ , given that
- $E' \subseteq E$ ,
- $\emptyset \neq C \subseteq A \setminus E$  and
- $(C, A \setminus \{E' \cup C\}) \notin R.$

(subset of the *old* extension) (formely unaccepted arguments)

(no attacks to *outer* arguments)





#### Theorem 3 (eliminating arguments)

Given an AF  $\mathcal{A} = (A, R)$  and

- a semantics S, satisfying admissibility and conflict-freeness,
- $\bullet\,$  a semantics  $\mathcal{S}^*,$  satisfying reinstatement and
- a set *E* such that  $E \in \mathcal{E}_{\mathcal{S}}(\mathcal{A})$ .

**Theorem 3** (eliminating arguments)

Given an AF  $\mathcal{A} = (A, R)$  and

- a semantics S, satisfying admissibility and conflict-freeness,
- a semantics  $S^*$ , satisfying reinstatement and
- a set *E* such that  $E \in \mathcal{E}_{\mathcal{S}}(\mathcal{A})$ .

There is no weak enforcement  $\mathcal{F} = (\mathcal{A}^*, \mathcal{S}^*)$  of  $E^*$  if

- $E^* = E \setminus C$ , given that
- $C \subsetneq E$  and (proper subset of the *old* extension)
- (*C*, *A*\*E*) ∉ *R*.

(no attacks to *outer* arguments)



ΙŪ.

# **Impossibility Results**



### Recap - Abstract Principles [Baroni/Giacomin]

**Def.:** A semantics S satisfies the *directionality* principle if and only if for any argumentation framework  $A \in D_S$  and any unattacked set  $U \in US(A)$  it holds that:

• 
$$\mathcal{E}_{\mathcal{S}}(\mathcal{A}_{\downarrow U}) = \{ (E \cap U) | E \in \mathcal{E}_{\mathcal{S}}(\mathcal{A}) \}.$$

### Recap - Abstract Principles [Baroni/Giacomin]

**Def.:** A semantics S satisfies the *directionality* principle if and only if for any argumentation framework  $A \in D_S$  and any unattacked set  $U \in US(A)$  it holds that:

• 
$$\mathcal{E}_{\mathcal{S}}(\mathcal{A}_{\downarrow U}) = \{ (E \cap U) | E \in \mathcal{E}_{\mathcal{S}}(\mathcal{A}) \}.$$

#### Theorem 4 (Monotonicity)

Given an AF  $\mathcal{A} = (A, R)$  and a semantics  $\mathcal{S}$  satisfying directionality, then for all weak expansions  $\mathcal{A}^*$  of  $\mathcal{A}$  the following holds:

$$|\mathcal{E}_{\mathcal{S}}(\mathcal{A})| \leq |\mathcal{E}_{\mathcal{S}}(\mathcal{A}^*)|,$$

② 
$$\forall E \in \mathcal{E}_{\mathcal{S}}(\mathcal{A}) \exists E^* \in \mathcal{E}_{\mathcal{S}}(\mathcal{A}^*) : E ⊆ E^*$$
 and

#### **Corrollary 1**

#### Given the same assumptions as in Theorem 4, then

1. 
$$\bigcup_{E \in \mathcal{E}_{\mathcal{S}}(\mathcal{A})} E \subseteq \bigcup_{E^* \in \mathcal{E}_{\mathcal{S}}(\mathcal{A}^*)} E^* \text{ (credulously justified args persist),}$$
  
2. 
$$\bigcap_{E \in \mathcal{E}_{\mathcal{S}}(\mathcal{A})} E \subseteq \bigcap_{E^* \in \mathcal{E}_{\mathcal{S}}(\mathcal{A}^*)} E^* \text{ (skeptically justified args persist).}$$

#### **Expansion Chain**

**Def.:** Let  $C = \langle A_0, ..., A_n \rangle$  be a sequence of AFs, A an AF. C is called expansion chain of A iff

*C* is called weak (resp. strong) if all expansions in the chain are weak (resp. strong).

#### **Expansion Chain**

**Def.:** Let  $C = \langle A_0, ..., A_n \rangle$  be a sequence of AFs, A an AF. C is called expansion chain of A iff

*C* is called weak (resp. strong) if all expansions in the chain are weak (resp. strong).

#### **Corrollary 2**

Let  $C = \langle A_0, ..., A_n \rangle$  be a weak expansion chain of A, and let *i* be the smallest integer such that  $A_i$  covers *a*.Given that S satisfies the directionality principle, we get: *a* is in some/all extensions of A iff *a* is in some/all extensions of  $A_i$ .

#### Example - Checking Acceptability

Acceptability of  $a_5$  in the red colored AF decides its acceptability in the whole AF.



# **Open Questions**

- Minimal changes (enforcing problem)?
- Monotonicity results for strong expansions?
- Algorithm for detecting weak expansion chains (in process)?

# **Open Questions**

- Minimal changes (enforcing problem)?
- Monotonicity results for strong expansions?
- Algorithm for detecting weak expansion chains (in process)?

Thank you for your attention!

**Questions?**