Reasoning about Preferences in Structured Extended Argumentation Frameworks

Sanjay Modgil¹
Henry Prakken²

1 Department of Informatics, King’s College London
2 Department of Information and Computing Sciences, Utrecht University & Faculty of Law, University of Groningen
Outline of Talk

- Background
 1) ASPIC+ : Structuring Dung’s Abstract Argumentation Theory to identify a range of possible instantiations \(\Rightarrow\) extra expressivity allows for study of rationality postulates
 2) Extended Abstract Argumentation Theory : incorporates meta-argumentation about preferences applied to arguments

- Structuring Extended Argumentation Theory

- Rationality postulates satisfied by structured extended argumentation theories under assumptions
ASPIC+ ¹

- ASPIC+ builds on ASPIC: 1) defines a more general class of instantiations of Dung AFs; 2) Shows that rationality postulates satisfied when preferences over arguments accounted for

- Tree structured arguments (Vreeswijk) built from
 - defeasible and strict inference rules $\varphi_1 \ldots \varphi_n \Rightarrow \varphi$ and $\varphi_1 \ldots \varphi_n \rightarrow \varphi$
 where each φ_i is a wff in some logical language L
 - a knowledge base \mathcal{K} of premises that are wff in L
 1. Ordinary premises
 2. Axiom premises
 3. Assumption premises

ASPIRE+

- **Negation**: generalised to arbitrary contrary relation over wff of \mathcal{L} (cf. ABA: need not be symmetric)

- **Contrary based attacks defined**:
 - on ordinary or assumption premises (undermining),
 - on conclusion of **defeasible** inference rule (rebutting),
 - on defeasible inference rule itself (undercutting)

- A **defeats** B iff for some sub-argument B' of B, A's attack on B' **succeeds**
 - Some types of attack always succeed (e.g. undercut, undermining attack on an assumption premise)
 - Some succeed only if not $A <_a B'$, where $<_a$ is an argument ordering defined by given orderings on defeasible rules and non-axiom premises
Rationality Postulates and ASPIC+

- Arguments and defeats instantiate a Dung framework
- Closure and Consistency rationality postulates* shown to be satisfied under certain assumptions (e.g., strict rules closed under transposition or contraposition)

Significance of ASPIC+ is that it structures Dung frameworks, identifying a range of possible instantiations that satisfy rationality postulates, e.g.,
- argument schemes can be represented
- assumption based argumentation shown to be a special case
- more recently deductive argumentation (e.g., Besnard and Hunter) shown to be a special case
- argument orderings assumed to be defined by weakest or last link principles

Extended Argumentation Theory ¹

- **Extended Argumentation Framework (EAF)** = \((\text{Args}, \text{Attack}, \text{PrefAtt})\)

- **\text{PrefAtt} \subseteq (\text{Args} \times \text{Attack})**

 if \((z, (x,y)) \in \text{PrefAtt}\) then \(z\) expresses that \(y\) is preferred to \(x\)

- Ensuring satisfaction of consistency postulates motivated two features of **abstract** theory:

 1) if \((z, (x,y)), (z', (y,x)) \in \text{PrefAtt}\) then \((z,z'), (z',z) \in \text{Attack}\)

 2) \(S \subseteq \text{Args}\) is conflict free if it contains no symmetrically attacking arguments, and if \(x,y \in S, (x,y) \in \text{Attack}\) then \(z \in S, (z, (x,y)) \in \text{PrefAtt}\)

Extended Argumentation Theory

- Modified def. of acceptability defined for EAFs
- Extensions of EAFs under Dung semantics defined

\[S = B \]

\[C \rightarrow T = \text{trust BBC more than CNN} \]

\[R = \text{stats more rational than trust} \]

\[S = \text{stats say CNN better than BBC} \]

\(\{ C, S, R \} \) is single grounded / preferred extension
Structuring EAFs

- EAFs subsume and extend preference and value-based argumentation to accommodate argumentation based reasoning about possibly contradictory preferences/values

- Adopt Dung’s level of abstraction - hence provide for instantiation by logics facilitating reasoning about priorities (over names of object level formulae)

- However, as with Dung AFs, level of abstraction precludes identification of appropriate (in terms of satisfying rationality postulates) instantiations

- ⇒ apply ASPIC+ methodology to EAFs …
Re-defining the Extended Theory with Collective Pref-Attacks

- EAFs with collective pref attacks = \((\text{Args}, \text{Attack}, \text{PrefAtt})\)

- \(\text{PrefAtt} \subseteq (2^{\text{Args}}/\emptyset) \times \text{Attack}\)

- Features of abstract theory designed to ensure that consistency postulates satisfied:

 1) if \((z, (x,y)), (z', (y,x)) \in \text{PrefAtt}\) then \((z, z'), (z', z) \in \text{Attack}\)

 2) \(S \subseteq \text{Args}\) is conflict free if it contains no symmetrically attacking arguments, and if \(x, y \in S, (x, y) \in \text{Attack}\) then \(z \in S, (z, (x, y)) \in \text{PrefAtt}\)

- All properties of Extended Argumentation Theory preserved
Structuring EAFCs

- Tree structured arguments built from *defeasible and strict inference rules* and a knowledge base of ordinary, axiom and assumption premises (as for ASPIC+), but now *no given argument ordering*

- Contrary relation defined over language, and contrary based attack relation defined as for ASPIC+

- Partial function \mathcal{P} maps sets of arguments to pairs (Y, X)

 e.g., $(Y, X) \in \mathcal{P} (\{Z1, Z2, Z3\})$ means $Z1, Z2, Z3$ collectively conclude that Y is preferred to X
Structuring EAFCs

- \((\text{Args, Attack, PrefAtt})\) where \(\text{Args}\) and \(\text{Attack}\) defined as for ASPIC+

- \((\Phi, (x,y)) \in \text{PrefAtt} \text{ if } (x,y) \in \text{Attack}, \text{ and:} \)

 \[\forall \text{ sub-argument } y' \text{ of } y, \text{ s.t. } x \text{ rebuts or undermines } y':\]
 - \((x,y')\) does not succeed independently of preferences
 - \(\exists \Phi' \subseteq \Phi \text{ such that } (y',x) \in \mathcal{P}(\Phi')\)
 - \(\Phi\) is set inclusion minimal
Example

\[\begin{align*}
X &= [\text{op1} : \neg a] \\
Y &= [\text{op2} : b, s1 : b \rightarrow a] \\
Z &= [\text{ap1} : c, d1 : c \Rightarrow \text{op1} > \text{op2}] \\
Q &= [\text{op3} : e, d2 : e \Rightarrow \neg c]
\end{align*} \]

\((X, Y) \in P(\{Z\}) \) by weakest and last link principles
Rationality Postulates

- **Theorem Sub-argument Closure**: Let E be a complete extension of a structured EAFC. For any $A \in E$, if A' is a sub-argument of A then $A' \in E$.

- **Theorem Closure under Strict Rules**: Let E be a complete extension of a structured EAFC. Then $\{\text{Conc}(A) | A \in E\} = \text{Cl}_{R_s} (\{\text{Conc}(A) | A \in E\})$.

- Satisfaction of consistency postulates under assumptions for ASPIC+ and “preference assumptions” on \mathcal{P} that have been shown to be satisfied by weakest and last link principles:
Rationality Postulates

Not in COMMA paper, but more recently proved that:

- **Theorem Direct Consistency**: Let E be the grounded extension of a structured EAFC. Then $\{\text{Conc}(A) \mid A \in E\}$ is consistent.

- **Theorem Indirect Consistency**: Let E be the grounded extension of a structured EAFC. Then $\text{Cl}_{Rs}(\{\text{Conc}(A) \mid A \in E\})$ is consistent.

In COMMA paper the consistency theorems are shown for *any semantics* subsumed under the complete semantics, for *hierarchical* EAFCs.
Hierarchical \textit{EAFs}

- Hierarchical \textit{EAFs} restrict interactions between the levels - shown to suffice for applications of extended argumentation to agent, normative, and legal reasoning
Example

\[X = [\text{op1} : \neg a] \]

\[\{Z = [\text{ap1} : c, \text{d1} : c \Rightarrow \text{op1} > \text{op2}]\} \]

\[Y = [\text{op2} : b, s1 : b \rightarrow a] \]

\[X' \]

\[E = \{X, Y, Z\} \text{ is conflict free and complete but would seem to violate direct consistency!} \]

\[\text{But } X \text{ can be extended with transposition } s1' : \neg a \rightarrow \neg b, \text{ obtaining } X' = [\text{op1} : \neg a, s1' : \neg a \rightarrow \neg b] \text{ which must be in } E \]

\[\text{If } P \text{ satisfies preference assumptions (as shown for weakest and last link), there cannot be a } Z' \in E \text{ s.t. } (\{Z'\},(X',Y)) \text{ making } E' = \{X, Y, Z, X', Z'\} \text{ conflict free and complete} \]

\[\Rightarrow \text{ there cannot be such an } E = \{X, Y, Z\} \text{ violating direct consistency} \]
Conclusions

- Structured EAFCs provide for instantiation by a *range* of logics, while ensuring satisfaction of rationality postulates. Examples include existing logics that encode object level reasoning about priorities (e.g., Prakken and Sartor’s logic programming with defeasible priorities).

- Currently extending special cases of ASPIC+ to accommodate argumentation reasoning about preferences over arguments. This includes extending deductive argumentation (Besnard and Hunter) with classical logic arguments that claim preferences over other classical logic arguments.