Dialectical Proofs for Constrained Argumentation

C. Devred1 S. Doutre2 C. Lefèvre1 P. Nicolas1

1LERIA, University of Angers, France
2IRIT, University of Toulouse, France

COMMA 2010
Overview

1. Argumentation Frameworks
 - Dung’s Argumentation Framework
 - Constrained Argumentation Framework

2. Constrained dialectical proofs
 - Dialectical framework
 - Definition of constrained dialectical proofs
 - Computation

3. Conclusion
[Dung95] An argumentation framework is a pair $\langle A, R \rangle$ where:

- A is a set of arguments
- $R \subseteq A \times A$ represents a notion of attack

Can be represented as a directed graph
Argumentation framework - Definition

[Dung95] An argumentation framework is a pair \(\langle A, R \rangle \) where:

- \(A \) is a set of arguments
- \(R \subseteq A \times A \) represents a notion of attack

Can be represented as a directed graph
A subset \(S \subseteq A \) is **admissible** if:

1. **S is conflict-free**: there are not two arguments in \(S \) such that one attacks the other, and
2. **S defends all its elements**: any argument \(y \in A \setminus S \) that attacks \(x \in S \) is attacked by some \(z \in S \).

\(S \) is a **preferred extension** iff it is maximal w.r.t. \(\subseteq \) among the set of admissible sets.

Example

Two of the preferred extensions: \(\{a, d, f, h, j\} \) and \(\{a, d, e, g, j\} \)
A subset $S \subseteq A$ is **admissible** if:

1. **S is conflict-free**: there are not two arguments in S such that one attacks the other, and
2. **S defends all its elements**: any argument $y \in A \setminus S$ that attacks $x \in S$ is attacked by some $z \in S$.

S is a **preferred extension** iff it is maximal w.r.t. \subseteq among the set of admissible sets.

Example

Two of the preferred extensions: \{a, d, f, h, j\} and \{a, d, e, g, j\}
A subset $S \subseteq \mathcal{A}$ is admissible if:

1. S is conflict-free: there are not two arguments in S such that one attacks the other, and
2. S defends all its elements: any argument $y \in \mathcal{A} \setminus S$ that attacks $x \in S$ is attacked by some $z \in S$.

S is a preferred extension iff it is maximal w.r.t. \subseteq among the set of admissible sets.

Example

Two of the preferred extensions: \{a, d, f, h, j\} and \{a, d, e, g, j\}
[Coste-Marquis et al. 06] A Constrained Argumentation Framework (CAF) is a triple $\langle A, R, C \rangle$ where:

- A is a set of arguments
- $R \subseteq A \times A$ represents a notion of attack
- C is a formula from $PROP_A$ (propositional language defined in the usual inductive way from the set A) which represents a constraint

Example:

$$C = (k \iff d) \land ((d \implies (f \lor g)) \lor (\neg d \implies \neg f))$$
[Coste-Marquis et al. 06] A Constrained Argumentation Framework (CAF) is a triple \(\langle A, R, C \rangle \) where:

- \(A \) is a set of arguments
- \(R \subseteq A \times A \) represents a notion of attack
- \(C \) is a formula from \(PROP_A \) (propositional language defined in the usual inductive way from the set \(A \)) which represents a constraint

\[
C = (k \leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f))
\]
A subset $S \subseteq \mathcal{A}$ is \mathcal{C}-admissible iff:

- S is admissible for $\langle \mathcal{A}, \mathcal{R} \rangle$, and
- S satisfies \mathcal{C}, that is, $\hat{S} = \{a \mid a \in S\} \cup \{\neg a \mid a \in \mathcal{A} \setminus S\}$ is a model of \mathcal{C}

S is a preferred \mathcal{C}-extension iff it is maximal w.r.t. \subseteq among the set of \mathcal{C}-admissible sets.

For each \mathcal{C}-admissible set X of CAF, there exists a preferred \mathcal{C}-extension E of CAF such that $X \subseteq E$.

Constrained argumentation framework - Semantics

- Dung’s Argumentation Framework
- Constrained Argumentation Framework
- Conclusion

Argumentation Frameworks
Constrained dialectical proofs
A subset $S \subseteq A$ is C-admissible iff:

- S is admissible for $\langle A, R \rangle$, and
- S satisfies C, that is, $\hat{S} = \{ a \mid a \in S \} \cup \{ \neg a \mid a \in A \setminus S \}$ is a model of C.

S is a preferred C-extension iff it is maximal w.r.t. \subseteq among the set of C-admissible sets.

For each C-admissible set X of CAF, there exists a preferred C-extension E of CAF such that $X \subseteq E$.
A subset $S \subseteq A$ is C-admissible iff:

- S is admissible for $\langle A, R \rangle$, and
- S satisfies C, that is, $\hat{S} = \{ a \mid a \in S \} \cup \{ \neg a \mid a \in A \setminus S \}$ is a model of C.

S is a preferred C-extension iff it is maximal w.r.t. \subseteq among the set of C-admissible sets.

For each C-admissible set X of CAF, there exists a preferred C-extension E of CAF such that $X \subseteq E$.
Constrained argumentation framework - Semantics

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

- \{a, d, e\} is admissible, but not \(C\)-admissible
- \{a, e\} is \(C\)-admissible
- \{a, e, g, d, k\} and \{a, e, g, j\} are two of the preferred \(C\)-extensions
Example

\[
C = (k \leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f))
\]

- \(\{a, d, e\}\) is admissible, but not \(C\)-admissible
- \(\{a, e\}\) is \(C\)-admissible
- \(\{a, e, g, d, k\}\) and \(\{a, e, g, j\}\) are two of the preferred \(C\)-extensions
Example

\[C = (k \iff d) \land ((d \implies (f \lor g)) \lor (\neg d \implies \neg f)) \]

- \{a, d, e\} is admissible, but not \(C\)-admissible
- \{a, e\} is \(C\)-admissible
- \{a, e, g, d, k\} and \{a, e, g, j\} are two of the preferred \(C\)-extensions
Constrained argumentation framework - Properties

- Generalizes other argumentation frameworks and semantics [Coste-Marquis et al. 06], e.g.:
 - Dung’s argumentation framework and the preferred semantics
 - Let $AF = \langle A, R \rangle$ be an argumentation framework. Let $CAF = \langle A, R, C \rangle$ be a constrained argumentation framework where C is any valid formula. Then the preferred extensions of AF are the preferred C-extensions of CAF.
 - Cayrol and Lagasquie-Schiex’s bipolar argumentation framework and the weakly c-preferred semantics
 - ...
Constrained argumentation framework - Properties

- Generalizes other argumentation frameworks and semantics [Coste-Marquis et al. 06], e.g.:
 - **Dung’s argumentation framework** and the preferred semantics
 - Let $AF = \langle A, R \rangle$ be an argumentation framework. Let $CAF = \langle A, R, C \rangle$ be a constrained argumentation framework where C is any valid formula. Then the preferred extensions of AF are the preferred C-extensions of CAF.
 - Cayrol and Lagasquie-Schiex’s bipolar argumentation framework and the weakly c-preferred semantics
 - ...

Constrained argumentation framework - Properties

- Generalizes other argumentation frameworks and semantics [Coste-Marquis et al. 06], e.g.:
 - Dung’s argumentation framework and the preferred semantics
 - Let $AF = \langle A, R \rangle$ be an argumentation framework. Let $CAF = \langle A, R, C \rangle$ be a constrained argumentation framework where C is any valid formula. Then the preferred extensions of AF are the preferred C-extensions of CAF.
 - Cayrol and Lagasquie-Schiex’s bipolar argumentation framework and the weakly c-preferred semantics

...
Constrained argumentation framework - Properties

- Generalizes other argumentation frameworks and semantics [Coste-Marquis et al. 06], e.g.:
 - Dung’s argumentation framework and the preferred semantics
 - Let $AF = \langle A, R \rangle$ be an argumentation framework. Let $CAF = \langle A, R, C \rangle$ be a constrained argumentation framework where C is any valid formula. Then the preferred extensions of AF are the preferred C-extensions of CAF.
 - Cayrol and Lagasquie-Schiex’s bipolar argumentation framework and the weakly c-preferred semantics
 - ...
Credulous acceptance problem under the \mathcal{C}-preferred semantics:

Given a CAF $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$,

is a given set $S \subseteq \mathcal{A}$ included in at least one preferred \mathcal{C}-extension of CAF?

Example

\[
C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f))
\]

Is $\{e, k\}$ included in at least one preferred \mathcal{C}-extension?
Credulous acceptance problem

Credulous acceptance problem under the \mathcal{C}-preferred semantics:

Given a CAF $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$,

is a given set $S \subseteq \mathcal{A}$

included in at least one preferred \mathcal{C}-extension of CAF?

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is $\{e, k\}$ included in at least one preferred \mathcal{C}-extension?
Adaptation of [Cayrol et al. 03] definitions:

Definition

Let \(\mathcal{A} \) be a set of arguments. Let \(_{\empty} \) be an “empty” argument. A **dialogue** is a finite sequence

\[
d = \langle a_0.a_1.a_2 \ldots a_n \rangle
\]

of arguments from \(\mathcal{A}^_ = \mathcal{A} \cup \{_{\empty}\} \).

The **player** of \(a_i, i \in \{0 \ldots n\} \), in \(d \) is:

- **PRO** if \(i \) is even and
- **OPP** if \(i \) is odd
Dialectical framework

Definition

Let $\phi : A^* \to 2^A$ a function called legal-move function. A ϕ-dialogue for a set of arguments $S \subseteq A$ is a dialogue d such that:

1. $\forall i \geq 0, a_i \in \phi(d_i)$, and
2. S is included in PRO(d), the set of arguments played by PRO in d.
Specific legal-move function ϕ_C defined to answer the credulous acceptance problem under the C-preferred semantics.

Definition

Let $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$ be a constrained argumentation framework and $S \subseteq \mathcal{A}$ be a set of arguments.

A ϕ_C-proof for S is a ϕ_C-dialogue d for S such that:

1. either d is empty or d ends with the empty argument, and
2. the set of arguments played by PRO in d satisfies \mathcal{C}

We say that d is won by PRO.
Constrained dialectical proofs

⇒ Specific legal-move function ϕ_C defined to answer the credulous acceptance problem under the C-preferred semantics.

Definition

Let $\langle A, R, C \rangle$ be a constrained argumentation framework and $S \subseteq A$ be a set of arguments.

A ϕ_C-proof for S is a ϕ_C-dialogue d for S such that:

1. either d is empty or d ends with the empty argument, and
2. the set of arguments played by PRO in d satisfies C

We say that d is won by PRO.
Constrained dialectical proofs

Proposition (Correctness and Completeness)

Let $CAF = \langle A, R, C \rangle$ be a constrained argumentation framework.

- If d is a ϕ_C-proof for a set of arguments $S \subseteq A$, then the set of arguments played by PRO in d is a C-admissible set of CAF that contains S.

- If a set of arguments S is included in a C-admissible set of CAF then there exists a ϕ_C-proof for S.
Constrained dialectical proofs - Example

Example

\[C = \left(k \leftrightarrow d \right) \land \left(d \Rightarrow (f \lor g) \right) \lor \left(\neg d \Rightarrow \neg f \right) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
d_0 &= \langle \rangle & \phi_C(d_0) &= \{e, k\} \\
d_1 &= \langle e \rangle & \phi_C(d_1) &= \{c\} \\
d_2 &= \langle e.c \rangle & \phi_C(d_2) &= \{a\} \\
d_3 &= \langle e.c.a \rangle & \phi_C(d_3) &= \{_c\} \\
d_4 &= \langle e.c.a._c \rangle & S \not\subseteq \text{PRO}(d_4) \text{ then } \phi_C(d_4) &= \{k\} \\
d_5 &= \langle e.c.a._c.k \rangle & \phi_C(d_5) &= \{_c\}
\end{align*}
\]
Example

\[C = (k \leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{ e, k \} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
d_0 &= \langle \rangle & \phi_C(d_0) &= \{ e, k \} \\
d_1 &= \langle e \rangle & \phi_C(d_1) &= \{ c \} \\
d_2 &= \langle e.c \rangle & \phi_C(d_2) &= \{ a \} \\
d_3 &= \langle e.c.a \rangle & \phi_C(d_3) &= \{ _ \} \\
d_4 &= \langle e.c.a._ \rangle & S \not\subseteq \text{PRO}(d_4) \text{ then } \phi_C(d_4) &= \{ k \} \\
d_5 &= \langle e.c.a._.k \rangle & \phi_C(d_5) &= \{ _ \}
\end{align*}
\]
Constrained dialectical proofs - Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
d_0 &= \langle \rangle & \phi_C(d_0) &= \{e, k\} \\
d_1 &= \langle e \rangle & \phi_C(d_1) &= \{c\} \\
d_2 &= \langle e.c \rangle & \phi_C(d_2) &= \{a\} \\
d_3 &= \langle e.c.a \rangle & \phi_C(d_3) &= \{_\} \\
d_4 &= \langle e.c.a._ \rangle & S \not\subseteq \text{PRO}(d_4) \text{ then } \phi_C(d_4) &= \{k\} \\
d_5 &= \langle e.c.a._.k \rangle & \phi_C(d_5) &= \{_\}
\end{align*}
\]
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \implies (f \lor g)) \lor (\neg d \implies \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
d_0 &= \langle \rangle & \phi_C(d_0) &= \{e, k\} \\
d_1 &= \langle e \rangle & \phi_C(d_1) &= \{c\} \\
d_2 &= \langle e.c \rangle & \phi_C(d_2) &= \{a\} \\
d_3 &= \langle e.c.a \rangle & \phi_C(d_3) &= \{_\} \\
d_4 &= \langle e.c.a._ \rangle & S \not\subseteq \text{PRO}(d_4) \text{ then } \phi_C(d_4) &= \{k\} \\
d_5 &= \langle e.c.a._.k \rangle & \phi_C(d_5) &= \{_\}
\end{align*}
\]
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \implies (f \lor g)) \lor (\neg d \implies \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
d_0 &= \langle \rangle \quad & \phi_C(d_0) &= \{e, k\} \\
d_1 &= \langle e \rangle \quad & \phi_C(d_1) &= \{c\} \\
d_2 &= \langle e, c \rangle \quad & \phi_C(d_2) &= \{a\} \\
d_3 &= \langle e, c, a \rangle \quad & \phi_C(d_3) &= \{_\} \\
d_4 &= \langle e, c, a, _ \rangle \quad & S \not\subseteq \text{PRO}(d_4) \text{ then } \phi_C(d_4) &= \{k\} \\
d_5 &= \langle e, c, a, _, k \rangle \quad & \phi_C(d_5) &= \{_\}
\end{align*}
\]
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \implies (f \lor g)) \lor (\neg d \implies \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
 d_0 &= \langle \rangle & \phi_C(d_0) &= \{e, k\} \\
d_1 &= \langle e \rangle & \phi_C(d_1) &= \{c\} \\
d_2 &= \langle e.c \rangle & \phi_C(d_2) &= \{a\} \\
d_3 &= \langle e.c.a \rangle & \phi_C(d_3) &= \{_\} \\
d_4 &= \langle e.c.a._. \rangle & S \not\subseteq \text{PRO}(d_4) \text{ then } \phi_C(d_4) &= \{k\} \\
d_5 &= \langle e.c.a._.k \rangle & \phi_C(d_5) &= \{_\}
\end{align*}
\]
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
 d_0 &= \langle \rangle & \phi_C(d_0) &= \{e, k\} \\
 d_1 &= \langle e \rangle & \phi_C(d_1) &= \{c\} \\
 d_2 &= \langle e.c \rangle & \phi_C(d_2) &= \{a\} \\
 d_3 &= \langle e.c.a \rangle & \phi_C(d_3) &= \{_\} \\
 d_4 &= \langle e.c.a._ \rangle & S \not\subseteq PRO(d_4) \text{ then } \phi_C(d_4) &= \{k\} \\
 d_5 &= \langle e.c.a._.k \rangle & \phi_C(d_5) &= \{_\}
\end{align*}
\]
Example

Constrained dialectical proofs - Example

![Diagram](attachment:image.png)

\[C = (k \leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

- \(d_0 = \langle \rangle \) \quad \phi_C(d_0) = \{e, k\}
- \(d_1 = \langle e \rangle \) \quad \phi_C(d_1) = \{c\}
- \(d_2 = \langle e.c \rangle \) \quad \phi_C(d_2) = \{a\}
- \(d_3 = \langle e.c.a \rangle \) \quad \phi_C(d_3) = \{_\}
- \(d_4 = \langle e.c.a._\rangle \) \quad S \not\subseteq \text{PRO}(d_4) \text{ then } \phi_C(d_4) = \{k\}
- \(d_5 = \langle e.c.a.__k \rangle \) \quad \phi_C(d_5) = \{_\}
Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
\phi_C(d_0) &= \{e, k\} \\
\phi_C(d_1) &= \{c\} \\
\phi_C(d_2) &= \{a\} \\
\phi_C(d_3) &= \{_\} \\
\phi_C(d_4) &= \{k\} \\
\phi_C(d_5) &= \{_\}
\end{align*}
\]
Constrained dialectical proofs - Example

Definition of constrained dialectical proofs

Example

\[\begin{align*}
C &= (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \\
\text{Is } S &= \{e, k\} \text{ included in at least one preferred } C\text{-extension?}
\end{align*} \]

\[
\begin{align*}
d_0 &= \langle \rangle & \phi_C(d_0) &= \{e, k\} \\
d_1 &= \langle e \rangle & \phi_C(d_1) &= \{c\} \\
d_2 &= \langle e.c \rangle & \phi_C(d_2) &= \{a\} \\
d_3 &= \langle e.c.a \rangle & \phi_C(d_3) &= \{__\} \\
d_4 &= \langle e.c.a._. \rangle & S & \not\subseteq \text{PRO}(d_4) \text{ then } \phi_C(d_4) &= \{k\} \\
d_5 &= \langle e.c.a._.k \rangle & \phi_C(d_5) &= \{__\}
\end{align*} \]
Constrained dialectical proofs - Example

\[
C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f))
\]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\(d_0 = \langle \rangle \)	\(\phi_C(d_0) = \{e, k\} \)
\(d_1 = \langle e \rangle \)	\(\phi_C(d_1) = \{c\} \)
\(d_2 = \langle e.c \rangle \)	\(\phi_C(d_2) = \{a\} \)
\(d_3 = \langle e.c.a \rangle \)	\(\phi_C(d_3) = \{_\} \)
\(d_4 = \langle e.c.a._ \rangle \)	\(S \not\subseteq \text{PRO}(d_4) \) then \(\phi_C(d_4) = \{k\} \)
\(d_5 = \langle e.c.a._.k \rangle \)	\(\phi_C(d_5) = \{_\} \)
Constrained dialectical proofs - Example

\[C = (k \leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{ e, k \} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
\phi_C(d_0) &= \{ e, k \} \\
\phi_C(d_1) &= \{ c \} \\
\phi_C(d_2) &= \{ a \} \\
\phi_C(d_3) &= \{ _ \} \\
\phi_C(d_4) &= \{ k \} \\
\phi_C(d_5) &= \{ _ \}
\end{align*}
\]
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{ e, k \} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
 d_0 &= \langle \rangle & \phi_C(d_0) &= \{ e, k \} \\
 d_1 &= \langle e \rangle & \phi_C(d_1) &= \{ c \} \\
 d_2 &= \langle e.c \rangle & \phi_C(d_2) &= \{ a \} \\
 d_3 &= \langle e.c.a \rangle & \phi_C(d_3) &= \{ _ \} \\
 d_4 &= \langle e.c.a._. \rangle & S \not\subseteq \text{PRO}(d_4) \text{ then } \phi_C(d_4) &= \{ k \} \\
 d_5 &= \langle e.c.a._.k \rangle & \phi_C(d_5) &= \{ _ \}
\end{align*}
\]
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
d_0 &= \langle \rangle \quad \phi_C(d_0) = \{e, k\} \\
d_1 &= \langle e \rangle \quad \phi_C(d_1) = \{c\} \\
d_2 &= \langle e.c \rangle \quad \phi_C(d_2) = \{a\} \\
d_3 &= \langle e.c.a \rangle \quad \phi_C(d_3) = \{_\} \\
d_4 &= \langle e.c.a._ \rangle \quad S \notin \text{PRO}(d_4) \quad \text{then} \quad \phi_C(d_4) = \{k\} \\
d_5 &= \langle e.c.a._.k \rangle \quad \phi_C(d_5) = \{_\}
\end{align*}
\]
Constrained dialectical proofs - Example

\[C = (k \equiv d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
 d_0 &= \langle \rangle & \phi_C(d_0) &= \{e, k\} \\
 d_1 &= \langle e \rangle & \phi_C(d_1) &= \{c\} \\
 d_2 &= \langle e.c \rangle & \phi_C(d_2) &= \{a\} \\
 d_3 &= \langle e.c.a \rangle & \phi_C(d_3) &= \{_\} \\
 d_4 &= \langle e.c.a._\rangle & S \not\subseteq \text{PRO}(d_4) \text{ then } \phi_C(d_4) &= \{k\} \\
 d_5 &= \langle e.c.a._.k \rangle & \phi_C(d_5) &= \{_\}
\end{align*}
\]
Constrained dialectical proofs - Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
 d_0 &= \langle \rangle & \phi_c(d_0) &= \{e, k\} \\
 d_1 &= \langle e \rangle & \phi_c(d_1) &= \{c\} \\
 d_2 &= \langle e.c \rangle & \phi_c(d_2) &= \{a\} \\
 d_3 &= \langle e.c.a \rangle & \phi_c(d_3) &= \{_\} \\
 d_4 &= \langle e.c.a._\rangle & S \nsubseteq PRO(d_4) \text{ then } \phi_c(d_4) &= \{k\} \\
 d_5 &= \langle e.c.a._.k \rangle & \phi_c(d_5) &= \{_\}
\end{align*}
\]
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_0 = \langle \rangle \quad \phi_C(d_0) = \{e, k\} \]
\[d_1 = \langle e \rangle \quad \phi_C(d_1) = \{c\} \]
\[d_2 = \langle e.c \rangle \quad \phi_C(d_2) = \{a\} \]
\[d_3 = \langle e.c.a \rangle \quad \phi_C(d_3) = \{_\} \]
\[d_4 = \langle e.c.a._._ \rangle \quad S \not\subseteq \text{PRO}(d_4) \text{ then } \phi_C(d_4) = \{k\} \]
\[d_5 = \langle e.c.a._._.k \rangle \quad \phi_C(d_5) = \{_\} \]
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_0 = \langle \rangle \quad \phi_C(d_0) = \{e, k\} \]
\[d_1 = \langle e \rangle \quad \phi_C(d_1) = \{c\} \]
\[d_2 = \langle e.c \rangle \quad \phi_C(d_2) = \{a\} \]
\[d_3 = \langle e.c.a \rangle \quad \phi_C(d_3) = \{_\} \]
\[d_4 = \langle e.c.a._ \rangle \quad S \not\subseteq \text{PRO}(d_4) \text{ then } \phi_C(d_4) = \{k\} \]
\[d_5 = \langle e.c.a._.k \rangle \quad \phi_C(d_5) = \{_\} \]
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._.k._.\rangle \]
\[d_7 = \langle e.c.a._.k._.g.\rangle \]
\[d_8 = \langle e.c.a._.k._.g._.\rangle \]
\[d_9 = \langle e.c.a._.k._.g._.d\rangle \]

\(S \subseteq \text{PRO}(d_6) \) but \(\overline{\text{PRO}(d_6)} \not\models C \)

so \(\phi_C(d_6) = \{d, i, h, g\} \)

\(S \subseteq \text{PRO}(d_7) \) but \(\overline{\text{PRO}(d_7)} \not\models C \)

so \(\phi_C(d_7) = \{_\} \)

\(S \subseteq \text{PRO}(d_8) \) but \(\overline{\text{PRO}(d_8)} \not\models C \)

so \(\phi_C(d_8) = \{d, i\} \)

\(S \subseteq \text{PRO}(d_9) \) but \(\overline{\text{PRO}(d_9)} \not\models C \)

so \(\phi_C(d_9) = \{_\} \)
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._.k._.\rangle \quad S \subseteq \text{PRO}(d_6) \text{ but } \widehat{\text{PRO}}(d_6) \not\models C \]

so \(\phi_C(d_6) = \{d, i, h, g\} \)

\[d_7 = \langle e.c.a._.k._.g.\rangle \quad \phi_C(d_7) = \{_\} \]

\[d_8 = \langle e.c.a._.k._.g._.\rangle \quad S \subseteq \text{PRO}(d_8) \text{ but } \widehat{\text{PRO}}(d_8) \not\models C \]

so \(\phi_C(d_8) = \{d, i\} \)

\[d_9 = \langle e.c.a._.k._.g._.d.\rangle \quad \phi_C(d_9) = \{_\} \]
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._.k._.\rangle \]
\[d_7 = \langle e.c.a._.k._.g.\rangle \]
\[d_8 = \langle e.c.a._.k._.g._.\rangle \]
\[d_9 = \langle e.c.a._.k._.g._.d.\rangle \]

\[S \subseteq \text{PRO}(d_6) \text{ but } \overline{\text{PRO}(d_6)} \not\models C \]
so \(\phi_C(d_6) = \{d, i, h, g\} \)

\[\phi_C(d_7) = \{_\} \]
\[\phi_C(d_8) = \{_\} \]

\[S \subseteq \text{PRO}(d_8) \text{ but } \overline{\text{PRO}(d_8)} \not\models C \]
so \(\phi_C(d_8) = \{d, i\} \)

\[\phi_C(d_9) = \{_\} \]
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._.k._.\rangle \quad S \subseteq PRO(d_6) \text{ but } PRO(d_6) \not\models C \]

so \(\phi_C(d_6) = \{d, i, h, g\} \)

\[d_7 = \langle e.c.a._.k._.g.\rangle \quad \phi_C(d_7) = \{_\} \]

\[d_8 = \langle e.c.a._.k._.g._.\rangle \quad S \subseteq PRO(d_8) \text{ but } PRO(d_8) \not\models C \]

so \(\phi_C(d_8) = \{d, i\} \)

\[d_9 = \langle e.c.a._.k._.g._.d\rangle \quad \phi_C(d_9) = \{_\} \]
Constrained dialectical proofs - Example

Example

\[
C = (k \leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f))
\]

Is \(S = \{e, k\}\) included in at least one preferred \(C\)-extension?

\[
d_6 = \langle e.c.a._.k._.\rangle
\]
\[
S \subseteq \text{PRO}(d_6) \text{ but } \overline{\text{PRO}}(d_6) \not\models C
\]
so \(\phi_C(d_6) = \{d, i, h, g\}\)

\[
d_7 = \langle e.c.a._.k._.g.\rangle
\]
\[
\phi_C(d_7) = \{_\}
\]

\[
d_8 = \langle e.c.a._.k._.g._.\rangle
\]
\[
S \subseteq \text{PRO}(d_8) \text{ but } \overline{\text{PRO}}(d_8) \not\models C
\]
so \(\phi_C(d_8) = \{d, i\}\)

\[
d_9 = \langle e.c.a._.k._.g._.d.\rangle
\]
\[
\phi_C(d_9) = \{_\}\]
Constrained dialectical proofs - Example

Example

\[C = (k \Leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._k._\rangle \quad S \subseteq \text{PRO}(d_6) \text{ but } \text{PRO}(d_6) \not\models C \]

so \(\phi_C(d_6) = \{d, i, h, g\} \)

\[d_7 = \langle e.c.a._k._.\rangle \quad \phi_C(d_7) = \{_\} \]

\[d_8 = \langle e.c.a._k._.g.\rangle \quad S \subseteq \text{PRO}(d_8) \text{ but } \text{PRO}(d_8) \not\models C \]

so \(\phi_C(d_8) = \{d, i\} \)

\[d_9 = \langle e.c.a._k._.g.d.\rangle \quad \phi_C(d_9) = \{_\} \]
Constrained dialectical proofs - Example

Example

\[
\begin{align*}
C &= (k \leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f))
\end{align*}
\]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[
\begin{align*}
d_6 &= \langle e.\,c.\,a.\,_,\,k.\,_,\,\rangle & S \subseteq \text{PRO}(d_6) \text{ but } \widehat{\text{PRO}}(d_6) \not\models C \\
s&\quad \text{so } \phi_C(d_6) = \{d, i, h, g\} \\
d_7 &= \langle e.\,c.\,a.\,_,\,k.\,_,\,g.\,\rangle & \phi_C(d_7) = \{_\} \\
d_8 &= \langle e.\,c.\,a.\,_,\,k.\,_,\,g.\,_,\,\rangle & S \subseteq \text{PRO}(d_8) \text{ but } \widehat{\text{PRO}}(d_8) \not\models C \\
s&\quad \text{so } \phi_C(d_8) = \{d, i\} \\
d_9 &= \langle e.\,c.\,a.\,_,\,k.\,_,\,g.\,_,\,d\,\rangle & \phi_C(d_9) = \{_\}
\end{align*}
\]
Constrained dialectical proofs - Example

Example

\[C = (k \Leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{ e, k \} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._k._. \rangle \]
\[S \subseteq \text{PRO}(d_6) \text{ but } \text{PRO}(d_6) \not\models C \]
so \(\phi_C(d_6) = \{ d, i, h, g \} \)

\[d_7 = \langle e.c.a._k._.g. \rangle \]
\[\phi_C(d_7) = \{ _ \} \]

\[d_8 = \langle e.c.a._k._.g._. \rangle \]
\[S \subseteq \text{PRO}(d_8) \text{ but } \text{PRO}(d_8) \not\models C \]
so \(\phi_C(d_8) = \{ d, i \} \)

\[d_9 = \langle e.c.a._k._.g._.d \rangle \]
\[\phi_C(d_9) = \{ _ \} \]
Constraint dialectical proofs - Example

Example

\[C = (k \leftrightarrow d') \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._.k._.\rangle \quad S \subseteq \text{PRO}(d_6) \text{ but PRO}(d_6) \not\models C \]

so \(\phi_C(d_6) = \{d, i, h, g\} \)

\[d_7 = \langle e.c.a._.k._.g.\rangle \quad \phi_C(d_7) = \{_\} \]

\[d_8 = \langle e.c.a._.k._.g._.\rangle \quad S \subseteq \text{PRO}(d_8) \text{ but PRO}(d_8) \not\models C \]

so \(\phi_C(d_8) = \{d, i\} \)

\[d_9 = \langle e.c.a._.k._.g._.d\rangle \quad \phi_C(d_9) = \{_\} \]
Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._.k._.\rangle \]

\[d_7 = \langle e.c.a._.k._.g.\rangle \]

\[d_8 = \langle e.c.a._.k._.g._.\rangle \]

\[d_9 = \langle e.c.a._.k._.g._.d\rangle \]

\(S \subseteq \text{PRO}(d_6) \) but \(\overline{\text{PRO}(d_6)} \not\models C \)

so \(\phi_C(d_6) = \{d, i, h, g\} \)

\(S \subseteq \text{PRO}(d_7) \) but \(\overline{\text{PRO}(d_7)} \not\models C \)

so \(\phi_C(d_7) = \{_\} \)

\(S \subseteq \text{PRO}(d_8) \) but \(\overline{\text{PRO}(d_8)} \not\models C \)

so \(\phi_C(d_8) = \{d, i\} \)

\(S \subseteq \text{PRO}(d_9) \) but \(\overline{\text{PRO}(d_9)} \not\models C \)

so \(\phi_C(d_9) = \{_\} \)
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

- \(d_6 = \langle e.c.a._.k._.\rangle \) \(S \subseteq \text{PRO}(d_6) \) but \(\widehat{\text{PRO}}(d_6) \not\models C \)
 - so \(\phi_C(d_6) = \{d, i, h, g\} \)

- \(d_7 = \langle e.c.a._.k._.g\rangle \) \(\phi_C(d_7) = \{_\} \)

- \(d_8 = \langle e.c.a._.k._.g._.\rangle \) \(S \subseteq \text{PRO}(d_8) \) but \(\widehat{\text{PRO}}(d_8) \not\models C \)
 - so \(\phi_C(d_8) = \{d, i\} \)

- \(d_9 = \langle e.c.a._.k._.g._.d\rangle \) \(\phi_C(d_9) = \{_\} \)
Constrained dialectical proofs - Example

Example

\[C = (k \leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._k._\rangle \quad \text{S} \subseteq \text{PRO}(d_6) \text{ but } \text{PRO}(d_6) \not\models C \]

so \(\phi_C(d_6) = \{d, i, h, g\} \)

\[d_7 = \langle e.c.a._k._g._\rangle \quad \phi_C(d_7) = \{_\} \]

\[d_8 = \langle e.c.a._k._g._d._\rangle \quad S \subseteq \text{PRO}(d_8) \text{ but } \text{PRO}(d_8) \not\models C \]

so \(\phi_C(d_8) = \{d, i\} \)

\[d_9 = \langle e.c.a._k._g._d._\rangle \quad \phi_C(d_9) = \{_\} \]
Constrained dialectical proofs - Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._.k._\rangle \quad S \subseteq PRO(d_6) \text{ but } PRO(d_6) \not\models C \]

so \(\phi_C(d_6) = \{d, i, h, g\} \)

\[d_7 = \langle e.c.a._.k._.g\rangle \quad \phi_C(d_7) = \{_\} \]

\[d_8 = \langle e.c.a._.k._.g._\rangle \quad S \subseteq PRO(d_8) \text{ but } PRO(d_8) \not\models C \]

so \(\phi_C(d_8) = \{d, i\} \)

\[d_9 = \langle e.c.a._.k._.g._.d\rangle \quad \phi_C(d_9) = \{_\} \]
Constrained dialectical proofs - Example

Example

\[C = (k \Leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._.k._. \rangle \quad \text{S \subseteq PRO}(d_6) \text{ but } \widehat{\text{PRO}}(d_6) \not\models C \]

so \(\phi_C(d_6) = \{d, i, h, g\} \)

\[d_7 = \langle e.c.a._.k._.g. \rangle \quad \phi_C(d_7) = \{_\} \]

\[d_8 = \langle e.c.a._.k._.g._. \rangle \quad \text{S \subseteq PRO}(d_8) \text{ but } \widehat{\text{PRO}}(d_8) \not\models C \]

so \(\phi_C(d_8) = \{d, i\} \)

\[d_9 = \langle e.c.a._.k._.g._.d. \rangle \quad \phi_C(d_9) = \{_\} \]
Constrained dialectical proofs - Example

Example

$$C = (k \Leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f))$$

Is $S = \{e, k\}$ included in at least one preferred C-extension?

$$d_6 = \langle e.c.a._.k._.\rangle$$

$S \subseteq \text{PRO}(d_6)$ but $\widehat{\text{PRO}}(d_6) \not\models C$

so $\phi_C(d_6) = \{d, i, h, g\}$

$$d_7 = \langle e.c.a._.k._.g.\rangle$$

$\phi_C(d_7) = \{_\}$

$$d_8 = \langle e.c.a._.k._.g._.\rangle$$

$S \subseteq \text{PRO}(d_8)$ but $\widehat{\text{PRO}}(d_8) \not\models C$

so $\phi_C(d_8) = \{d, i\}$

$$d_9 = \langle e.c.a._.k._.g._.d\rangle$$

$\phi_C(d_9) = \{_\}$
Constrained dialectical proofs - Example

Example

\[
\begin{align*}
\mathcal{C} &= (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \\
S &= \{e, k\} \text{ included in at least one preferred } \mathcal{C}\text{-extension?}
\end{align*}
\]

\[
\begin{align*}
d_6 &= \langle e.c.a._.k_.\rangle & S &\subseteq \text{PRO}(d_6) \text{ but } \overline{\text{PRO}(d_6)} &\nmid\not\in \mathcal{C} \\
&\text{so } \phi_C(d_6) = \{d, i, h, g\} \\
d_7 &= \langle e.c.a._.k_.g.\rangle & \phi_C(d_7) = \{_\} \\
d_8 &= \langle e.c.a._.k_.g_.\rangle & S &\subseteq \text{PRO}(d_8) \text{ but } \overline{\text{PRO}(d_8)} \nmid\not\in \mathcal{C} \\
&\text{so } \phi_C(d_8) = \{d, i\} \\
d_9 &= \langle e.c.a._.k_.g_.d\rangle & \phi_C(d_9) = \{_\}
\end{align*}
\]
Constrained dialectical proofs - Example

Example

\[C = (k \leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._.k._.\rangle \quad S \subseteq \text{PRO}(d_6) \quad \text{but} \quad \text{PRO}(d_6) \not\models C \]

so \(\phi_C(d_6) = \{d, i, h, g\} \)

\[d_7 = \langle e.c.a._.k._.g.\rangle \quad \phi_C(d_7) = \{_\} \]

\[d_8 = \langle e.c.a._.k._.g._.\rangle \quad S \subseteq \text{PRO}(d_8) \quad \text{but} \quad \text{PRO}(d_8) \not\models C \]

so \(\phi_C(d_8) = \{d, i\} \)

\[d_9 = \langle e.c.a._.k._.g._.d.\rangle \quad \phi_C(d_9) = \{_\} \]
Constrained dialectical proofs - Example

Example

\[C = (k \Leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._.k._.\rangle \quad S \subseteq \text{PRO}(d_6) \text{ but } \overline{\text{PRO}(d_6)} \not\models C \]

so \(\phi_C(d_6) = \{d, i, h, g\} \)

\[d_7 = \langle e.c.a._.k._.g.\rangle \quad \phi_C(d_7) = \{_\} \]

\[d_8 = \langle e.c.a._.k._.g._\rangle \quad S \subseteq \text{PRO}(d_8) \text{ but } \overline{\text{PRO}(d_8)} \not\models C \]

so \(\phi_C(d_8) = \{d, i\} \)

\[d_9 = \langle e.c.a._.k._.g._d\rangle \quad \phi_C(d_9) = \{_\} \]
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_6 = \langle e.c.a._.k._. \rangle \]
\[S \subseteq \text{PRO}(d_6) \text{ but } \overline{\text{PRO}(d_6)} \not \models C \]
so \(\phi_C(d_6) = \{d, i, h, g\} \)

\[d_7 = \langle e.c.a._.k._.g. \rangle \]
\[\phi_C(d_7) = \{_\} \]

\[d_8 = \langle e.c.a._.k._.g._. \rangle \]
\[S \subseteq \text{PRO}(d_8) \text{ but } \overline{\text{PRO}(d_8)} \not \models C \]
so \(\phi_C(d_8) = \{d, i\} \)

\[d_9 = \langle e.c.a._.k._.g._.d \rangle \]
\[\phi_C(d_9) = \{_\} \]
Constrained dialectical proofs - Example

Example

\[C = (k \Leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_{10} = \langle e.c.a._.k._.g._.d._.\rangle \quad S \subseteq \text{PRO}(d_{10}), \overset{\text{PRO}(d_{10})}{\models} C \quad \text{so } \phi_C(d_{10}) = \emptyset \]

\(d_{10} \) is a \(\phi_C \)-dialogue won by PRO.
\(\text{PRO}(d_{10}) = \{e, a, k, g, d\} \) is a \(C \)-admissible set.
\(\Rightarrow \{e, k\} \) is included into at least one preferred \(C \)-extension
Constrained dialectical proofs - Example

Example

\[C = (k \Leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_{10} = \langle e.c.a._.k._.g._.d._. \rangle \quad S \subseteq \text{PRO}(d_{10}), \ \text{PRO}(d_{10}) \models C \]

so \(\phi_C(d_{10}) = \emptyset \)

\(d_{10} \) is a \(\phi_C \)-dialogue won by PRO.

\(\text{PRO}(d_{10}) = \{e, a, k, g, d\} \) is a \(C \)-admissible set.

\(\Rightarrow \) \{e, k\} is included into at least one preferred \(C \)-extension
Constrained dialectical proofs - Example

Example

\[\begin{align*}
C &= (k \iff d) \land ((d \implies (f \lor g)) \lor (\neg d \implies \neg f)) \\
\text{Is } S &= \{e, k\} \text{ included in at least one preferred } C\text{-extension?}
\end{align*} \]

\[d_{10} = \langle e.c.a._.k._.g._.d._. \rangle \quad S \subseteq \text{PRO}(d_{10}), \overline{\text{PRO}(d_{10})} \models C \]

so \(\phi_C(d_{10}) = \emptyset \)

\(d_{10} \) is a \(\phi_C \)-dialogue won by PRO.

\(\text{PRO}(d_{10}) = \{e, a, k, g, d\} \) is a \(C \)-admissible set.

\(\Rightarrow \{e, k\} \text{ is included into at least one preferred } C\text{-extension} \)
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{ e, k \} \) included in at least one preferred \(C \)-extension?

\[d_{10} = \langle e . c . a . _ . k . _ . g . _ . d . _ \rangle \quad S \subseteq \text{PRO}(d_{10}), \overline{\text{PRO}(d_{10})} \models C \]

so \(\phi_C(d_{10}) = \emptyset \)

\(d_{10} \) is a \(\phi_C \)-dialogue won by PRO.

\(\text{PRO}(d_{10}) = \{ e, a, k, g, d \} \) is a \(C \)-admissible set.

\(\Rightarrow \{ e, k \} \) is included into at least one preferred \(C \)-extension
Constrained dialectical proofs - Example

Example

\[C = (k \iff d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_{10} = \langle e, c, a, _, k, _, g, _, d, _ \rangle \quad S \subseteq \text{PRO}(d_{10}), \overline{\text{PRO}(d_{10})} \models C \]

so \(\phi_C(d_{10}) = \emptyset \)

\(d_{10} \) is a \(\phi_C \)-dialogue won by PRO.

\(\text{PRO}(d_{10}) = \{e, a, k, g, d\} \) is a \(C \)-admissible set.

\(\Rightarrow \{e, k\} \) is included into at least one preferred \(C \)-extension
Constrained dialectical proofs - Example

Example

\[C = (k \leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_{10} = \langle e, c, a, _ , k, _ , g, _ , d, _ \rangle \quad S \subseteq \text{PRO}(d_{10}), \overline{\text{PRO}(d_{10})} \models C \]

so \(\phi_C(d_{10}) = \emptyset \)

\(d_{10} \) is a \(\phi_C \)-dialogue won by PRO.

\(\text{PRO}(d_{10}) = \{e, a, k, g, d\} \) is a \(C \)-admissible set.

\(\Rightarrow \{e, k\} \) is included into at least one preferred \(C \)-extension
Constrained dialectical proofs - Example

\[C = (k \iff d) \land ((d \implies (f \lor g)) \lor (\neg d \implies \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_{10} = \langle e.c.a._.k._.g._.d._. \rangle \quad S \subseteq PRO(d_{10}), \overrightarrow{PRO(d_{10})} \models C \]

so \(\phi_C(d_{10}) = \emptyset \)

\(d_{10} \) is a \(\phi_C \)-dialogue won by PRO.

\(PRO(d_{10}) = \{e, a, k, g, d\} \) is a \(C \)-admissible set.

\(\Rightarrow \{e, k\} \) is included into at least one preferred \(C \)-extension
Constrained dialectical proofs - Example

\[C = (k \Leftrightarrow d) \land ((d \Rightarrow (f \lor g)) \lor (\neg d \Rightarrow \neg f)) \]

Is \(S = \{e, k\} \) included in at least one preferred \(C \)-extension?

\[d_{10} = \langle e.c.a._k._g._d._\rangle \quad S \subseteq \text{PRO}(d_{10}), \text{PRO}(d_{10}) \models C \]

so \(\phi_C(d_{10}) = \emptyset \)

\(d_{10} \) is a \(\phi_C \)-dialogue won by PRO.

\(\text{PRO}(d_{10}) = \{e, a, k, g, d\} \) is a \(C \)-admissible set.

\(\Rightarrow \{e, k\} \) is included into at least one preferred \(C \)-extension
Computation by ASP

- **Answer Set Programming:**
 - Simple and readable encoding
 - Well adapted to encode the iterating and alternating roles of pros and cons

- **Computation** of the constrained dialectical proofs:
 - In the ASP solver **ASPeRiX**
 - Program available at

 http://www.info.univ-angers.fr/pub/claire/asperix/Argumentation
Constrained argumentation frameworks: generalize other existing frameworks and semantics

Simple and general **dialectical framework**

Dialectical proofs for the credulous acceptance problem under the C-preferred semantics

Computation in ASP